It’s been a fantastic opportunity to catch up with natural history colleagues from around the world and to learn what everyone has been busy doing over the last few years. I also got to see some fantastic specimens held by NMS and I thought I’d set one of them as this week’s mystery object:
Do you have any idea what this might be?
As ever, you can leave your thoughts in the comments box below. Have fun!
Last week I gave you a mystery object from the Grant Museum of Zoology, UCL, with this old photo from my time as the Curator there:
This is one of those species that I have a bit of a soft spot for, due to the general weirdness of the skull. That does however make it quite recognisable as a specimen, even in a photo that hasn’t been taken for the purposes of identification – like this one.
Everyone who commented recognised that this is some sort of turtle, and thanks to that very flat skull with all the features towards the very front end, most people worked out that it’s a from a Mata-mata Chelus sp. Duméril, 1806.
Any extra information is useful when trying to identify fish, since there are so many species, but sometimes a bit of familiarity is what you really need to start narrowing down options, which makes the Zygoma community a helpful resource when dealing with an identification like this. And you did not disappoint!
Tony Irwin, jennifermacaire and Wouter van Gestel all came through with excellent observations on the species. This object is a neurocranium (we’ve talked about these before) with a very pronounced supraoccipital crest (the big fin-like crest on top), which combined with the overall shape of the neurocranium suggests it’s a member of the Sparidae (the family containing the Porgies and Seabreams).
Knowing this, and having the Fishbase list, makes it much easier to narrow down the likely species. Unfortunately, there is no single resource to make comparison easy, but a lot of trawling through a variety of images of skulls and neurocrania will yield results (Flickr has some useful images for example).
Image by Paula Burdiel, 2022
From my searches, the shape of the supraoccipital, vomer/prevomer (the beaky-looking bit) and that impressive set of supraorbital crests (those frills of bone above the eye sockets) suggest that this mystery object is probably the species suggested by Tony Irwin – the Gilt-head Seabream Sparus aurata Linnaeus, 1758. I’m not 100% sure of this identification, but it’s the best fit I can find.
Thanks to Paula for sharing this object and thanks to eveyone for your thoughts on this specimen – it’s always valuable to get your input!
This week I have another guest mystery object for you to have a go at identifying, this time it’s from Paula Burdiel, who found the specimen in summer 2020 while beachcombing in Islantilla, Huelva (Spain):
Image by Paula Burdiel, 2022
Image by Paula Burdiel, 2022
Image by Paula Burdiel, 2022
Image by Paula Burdiel, 2022
Image by Paula Burdiel, 2022
Image by Paula Burdiel, 2022
With this fantastic array of images and clear locality information, I’m hoping that we can figure out which species we have here. Let’s hear what you think it might be in the comments below – between us I think we can identify this fishy mystery object!
Last week we had a second guest mystery object from Rohan Long, who is based at the Harry Brookes Allen Museum of Anatomy and Pathology at the University of Melbourne.
The teeth tell us that the mystery object is from one of the Cercopithecidae (Old World Monkeys) since there are only two premolars instead of the three that you find in the Platyrrhini (New World Monkeys). That helps a bit, but there are still over 150 species in the Cercopithecidae to consider.
Some can be ruled out fairly easily, such as members of the Papionini, like baboons and macaques, which have adults that are more prognathic (their jaws jut forward) that this specimen. This is less true for juveniles (jaws jut more as the animal grows and matures), but we can ignore that here, since the mystery specimen has well-fused sutures and visible wear on the teeth, so we know it’s an adult.
Image by Gavan Mitchell, 2022
One thing that can be useful to consider when trying to identify primate skulls is the shape and position of the nasal opening. This can vary within species and it can be a feature sensitive to the angle at which a photograph is taken (making it more difficult to assess from images), but overall it can help narrow down possibilities without having to get into too much fine detail early in the identification process.
Image by Gavan Mitchell, 2022
The Mammalian Crania Picture Archive has well standardised images, including a reasonable variety of primates with males, females and animals of different ages represented. They also provide some measurements for each specimen, that may be useful when making comparisons. The primate page is here in case you’re not familiar with this very valuable resource.
Over the last week I’ve taken a look through a wide variety of skulls from different primate taxa and I’m confident that the mystery specimen is from the Colobinae. I think the position of the nasal opening (especially the top part of the opening in relation to the eyesockets) is helpful in distinguishing possible species within the subfamily. This makes sense when you consider that a third of the genera in the Colobinae are in a group known as the “odd-nosed monkeys”.
In this specimen the nasal opening forms a shield shaped hole with a flat top that starts quite high in relation to the eye sockets. In most species it starts lower, sometimes well below the line of the bottom margin of the eye socket. The Red Colobus is superficially quite similar, but when you look at other features it doesn’t look right – for example, if you look at the underside of the skull it has several different features, include a differently shaped incisor arcade and the pterygoids (the wing-shaped bits of bone that spread to either side, just behind the palate) are a different shape.
However, I did find a species which matches much better, so I am tentatively suggesting that the mystery object may be a Black-crested Sumatran Langur (AKA Mitred Leaf Monkey or Sumatran Surili) Presbytis melalophos (Raffles, 1821). If not that species I think the mystery specimen will be in the same Genus. There will undoubtedly be additional species with similar skulls that I’ve not seen, but within the limits of the resources at my disposal I don’t think I can do any better than that.
My thanks to everyone for your suggestions and many thanks to Rohan for sharing this mystery object. It’s been an interesting one and has reinforced my conclusion that primate skull identification can be REALLY difficult!
This week we have another guest mystery object from Rohan Long:
Today’s mystery object is another item from the Harry Brookes Allen Museum of Anatomy and Pathology at the University of Melbourne. In contrast to our last offering – a partial skull with most of the diagnostic features frustratingly absent – this is a full skeleton of a small primate. We have many classroom sets in our collection comprising complete, disarticulated skeletons of mammals, mostly marsupials and primates. The primate sets overwhelmingly consist of macaques (Macaca sp.) which I presume were lab animals from the University. Additionally, there are sets of a few baboons, a few chimpanzees, and one Sacred Langur (Semnopithecus entellus). Then there’s this one.
Image by Gavan Mitchell, 2022Image by Gavan Mitchell, 2022Image by Gavan Mitchell, 2022Image by Gavan Mitchell, 2022Image by Gavan Mitchell, 2022Image by Gavan Mitchell, 2022
I had originally described it as, “large macaque”, but after cataloguing dozens of macaque skeletons, it stood out as something different. It kept bugging me, and I had committed myself to giving every specimen in our comparative anatomy collection a proper identification. I had found some previous blog posts by Paolo while researching how to identify primate specimens, and that’s what prompted me to initially get in touch. In regards to provenance, our comparative anatomy collection was mostly amassed in the early 20th century, and many specimens are associated with Frederic Wood Jones, Anatomy Department Head from 1930-1937. Wood Jones and his colleagues had strong international networks, and there are species in this collection from all over the world.
As ever you can leave your observations, thoughts and suggestions about which species this might be in the comments section below. Have fun with this one!
Last week we had a guest mystery object from Rohan Long, Curator of the Harry Brookes Allen Museum of Anatomy & Pathology at the University of Melbourne:
Image by Gavan Mitchell, 2022
Image by Gavan Mitchell, 2022
Image by Gavan Mitchell, 2022
It is not an easy one. This part of the mammalian skull contains very few helpful diagnostic features – as pointed out by Kenny Travouillon:
But that is the part of the skull with the least amount of diagnostic character. That’s just mean!
Plus this is from a juvenile animal, and we all know how that can cause problems when making an identification.
Thanks to everyone for your comments – Rohan was keeping and eye on them here and on Twitter, so I’ll hand over to him to wrap this one up:
Well, it’s been a week, and many identifications for the mystery skull were offered on Twitter and in the Zygoma comments. Some suggestions were silky anteater, marsupial mole, pangolin, armadillo – but the focus quickly turned to marsupials. On Twitter, mammal curator Kenny Travouillon said it was not peramelemorphian or macropod, zooarchaeologist Jillian Garvey said that it could be macropod. Early on, biology lecturer Robin Beck said that it was definitely a phalangerid, and that it was probably a juvenile common brushtail possum (Trichosurus vulpecula). Robin identified the specimen as phalangerid based on the restriction of the mastoid exposure to a ventral strip on the occiput, and then narrowed down to trichosurine, rather than a phalangerine, due to the relatively flat dorsal profile of the skull. The bone texture indicates a juvenile specimen. (Richard came to the same conclusion in the Zygoma comments.)
I went digging around in our comparative anatomy collection to investigate this and then clouded matters a bit, as I found a partial skull of a juvenile common ringtail possum (Pseudocheirus peregrinus) which was superficially similar to the mystery skull. I thought this was the real identity of the skull, but Robin pointed out that the ventrally restricted mastoid exposure, more recessed stylomastoid foramen, and a well-developed pterygoid fossa all point to Trichosurus rather than Pseudocheirus.
I think this partial skull is conclusively identified to genus. I have already identified a number of (less ambiguous) Trichosurus specimens within the comparative anatomy collections. Although it would take more work to definitively ID the species, I think it is likely to be vulpecula – a very common and widely distributed species in Australia. As you may have noticed from the original images, the specimen has sand grains adhering to it. Based on this, I’d say that this was collected in the field, probably by Frederic Wood Jones (or members of the McCoy Society for Research and Investigation, which he founded) in the 1930s.
Thank you all for your suggestions and discussion!
Finally, I’d like to add my thanks to Rohan for giving us this mystery object to mull over. If anyone else fancies doing a guest mystery object, please do get in touch.
This week I’m delighted to have a guest mystery object for you, presented by Rohan Long, Curator of the Harry Brookes Allen Museum of Anatomy & Pathology at the University of Melbourne (who is on Twitter as @zoologyrohan) and photographed beautifully by his colleague Gavan Mitchell:
This is a skull from the Harry Brookes Allen Museum of Anatomy and Pathology at the University of Melbourne. Although the focus of our museum is on human anatomy, we have a significant comparative anatomy collection, which comprises hundreds of specimens of vertebrate animals – skeletal material, skulls, and potted specimens. Occasionally, I’ve encountered animal specimens that are very difficult to definitively ID, and this partial skull is one of them.
Image by Gavan Mitchell, 2022Image by Gavan Mitchell, 2022Image by Gavan Mitchell, 2022Image by Gavan Mitchell, 2022
Our comparative anatomy collections date from the earliest 20th century and are predominantly native Australian mammals and domestic animal species. However, the academics at the University have always had international networks, and there are species represented in the collection from all over the world. Many have been prepared in a lab for class specimens, many have been collected in the field. The latter are assumed to have been associated with Frederic Wood Jones, a British anatomist with a fondness for comparative anatomy and island collecting trips who was head of our Anatomy Department from 1930 to 1937.
Do you have any ideas what this portion of skull might be from? I don’t think we need cryptic answers for this one. Rohan will be keeping a close eye on the comments, so do feel free to ask questions.
Last week I gave you a nice skull to have a go at identifying:
It proved to be more tricky than I thought, but I think that may be because there is a skull image on Wikimedia that may have misled people searching for a comparative skull of this species.
This is the skull of the humble Guinea Pig Cavia porcellus (Linnaeus, 1758), but if you tried searching for Guinea Pig skull, you may have seen this image:
Clearly this is not the same species as our mystery object – the incisors alone are an absolute give-away, with their striking orange enamel and the their much greater size. Those big incisors also bed deeply into the mandible, creating a pronounced ridge at the base of the mandible that props the entire skull at an angle. This one is the skull of a Coypu, regardless of the Guinea Pig identification given on the Wikimedia page.
There were also quite a few suggestions that the mystery object might be a Capybara, or one of several other South American rodents. The size suggests it’s not Capybara – I suppose a very young Capybara might just about be small enough, although they would certainly have less pronounced muscle scars and more open sutures.
There are plenty of other South American rodents, but most of those of a similar size and overall shape have a much more V-shaped exit to the nasal passage in the palate, rather than this very open and U-shaped structure.
For this week’s mystery object, I’ve decided to go back to skulls. Any idea what this one belongs to?
I’m sure several of you will recognise this, so please keep your suggestions cryptic, to keep the game fun for people who are less familiar with this kind of critter. Enjoy!
Last week I decided to give you a taste of the kind of identification I often get asked to do. One bone with no scale and a photo from just one angle that doesn’t quite show what you’re looking at very clearly:
I must admit that I was suitably impressed with the responses though, since the very first response by Chris was cryptic yet absolutely spot-on.
As you probably figured out, this is the upper front section of jaw (or premaxilla if you’re feeling fancy) from a fish.
The more difficult bit is working out which fish, since there are plenty to choose from – over 28,000 species.
This is where knowing where the specimen came from can be helpful, since it can help narrow down the likely possible options. However, morphology is always the most important thing to consider and I find that locality is more useful for figuring out species than the higher taxonomic group – and higher taxonomy is really helpful for narrowing down options.
Of course, to do this you need good comparative morphological specimens to help steer you in the right direction. This can be difficult when working with fish, since there are so many species and they have skeletons that tend to be poorly fused, so there are many separate bony elements for each animal.
The premaxilla isn’t always the easiest element to differentiate, but there are a few things to look for:
The teeth. You do need to be careful with these as a feature, since they can break off and look quite different between individuals. Check out the teeth in this specimen and notice there is a line partway down each tooth. This is a weak point that the teeth can break along quite easily and I’ve seen examples of premaxillae from this species that have mainly squarish, blunt looking teeth because the sharp cusps have come off.
General shape. Some Orders of fish have premaxillae that are almost solid triangles (like the Tetraodontiformes), others are long, thin and quite straight – looking almost like just a shard of bone (like some Beloniformes). It’s worth taking a good look at the shape and trying to spot processes and articulation points, since these provide clues to the taxonomy.
Processes on the rear of the premaxilla. These can be present or absent, well defined, poorly defined, high, low, long, short, simple, complex etc. The thing to remember about this mystery specimen is that the rear of the premaxilla curves downward with no processes on the upper surface – so its close relatives are also unlikely to have processes, or if they have them they are unlikely to be well-developed.
Processes in the middle of the premaxilla. Some groups have a process like a fin in the middle of the premaxilla (e.g. Esociformes and Osmeriformes). The mystery has no process here.
Processes on the front of the premaxilla. Many groups do have at least one process on the upper surface at the front of the premaxilla, but the number and shape are important for identification. The mystery specimen has two – the first is tall and shaped a bit like a bat-ear the second is not fully separate from the first and it is lower and quite squared off:
When you start to put all of these features together it becomes easier to narrow down possibilities. If you use Osteobase to scan through images of premaxilla you’ll find that the premaxillae that are closest (although none are identical) are from the Pleuronectiformes – or the Flatfish.
Knowing this one is from Irish waters (which I admitted in the comments) helps narrow down options to 22 species (things like Turbot and flounders) and with a bit of searching online and especially checking specimens in the Archaeological Fish Resource at the University of Nottingham you can narrow down the possible species to one good option.
This is the premaxilla of a Halibut Hippoglossus hippoglossus (Linnaeus, 1758). These large flatfish undergo a strange developmental distortion of the head that allows them to lie on their side on the seabed without having their left eye sitting in the sand.
Illustration of Atlantic Halibut Hippoglossus hippoglossus by Marcus Elieser Bloch (1723–1799), via rawpixel.com.
This asymmetry is far more obvious in the whole animal than it is when just looking at the skull.
As you can hopefully make out, the jaws are reasonably symmetrical and the distortion is mostly in the area of the frontals and ethmoid bones, which have shifted to allow the eye to move. Here’s a more complete view of the right side of the Halibut skull to finish up with:
Last week I gave you a nice skull to have a go at identifying:
Pretty much everyone recognised it as a marsupial, thanks to the palatal vacuities and inflected angular of the mandible (as Allen Hazen alluded to).
The size, general shape of the skull and tooth shape narrows down possible species very quickly, as it’s quite large (at around 17cm) and quite kangeroo-shaped. That leaves the likely options as Eastern-grey, Western-grey or Red kangaroos.
Red Kangaroo skulls tend to average around 205mm long, Greys tend to average in the region of 145mm, so this falls between the two – either a small Red or a large Grey.
The sutures of the skull seem well-fused and there are quite robust muscle scars, suggesting a well-developed adult animal. For me this hints that it would probably be in the large end of the size range of its species, rather than at the small end of the size range – hinting at it being a Grey.
Another feature that hints at Grey Kangaroo is the crown of the third upper incisor, which in Red Kangaroos tends to be slightly broader than it is long, whereas in Greys it tends to be longer than wide.
Unfortunately, I’ve so far failed to find good enough verified images or specimens of Western Grey Kangaroo skulls to differentiate from the Eastern Grey.
I do know that this mystery specimen is identified as an Eastern Grey Macropus giganteus Shaw, 1790, but I am also aware that the taxonomy of these animals has been complex and confusing, especially since their ranges overlap so I don’t fully trust that identification. Sometimes a dose of scepticism is important when dealing with historic collections, so I think I’ll just leave it there after the tough week I’ve had.
Last week I gave you this rather nice skull to identify:
I was hoping that it would catch some of you out, since at first glance it looks like the skull of some kind of canid. I thought I had caught out Joe Vans, but then he noticed one of the features that sets this skull apart from dog skulls – the pinched-in section in the mid-muzzle area. Then everyone started piling in with their observations and my hopes of being tricksy were fully dashed.
This is of course the skull of that paragon of convergent evolution, the Thylacine (AKA the Tasmanian Wolf or Tiger) Thylacinus cynocephalus (Harris, 1808).
A= 8 incisors vs 6 in canids B= Lacrimal duct on outside of orbit C= Inwardly deflected angular process D= “Pinched” midsection of rostrum E= Palatal vacuities
These physical differences between the Thylacine and the Eutherian canids are features common to many marsupials and they act as reminders that evolution is limited by what it has to work with. At the most fundamental level that means DNA.
In recent years the methods for successfully extracting and sequencing DNA from museum specimens has moved on in leaps and bounds. In 2018 these advances allowed the Thylacine’s genome to be assembled, allowing comparison with their morphologically similar, but taxonomically distant counterparts.
The team that did this went looking for similarities between protein coding genes in the different lineages at first, to understand what was driving the morphological convergence – but it seems that they were looking in the wrong place.
When they looked more closely, it was actually in the cis-regulatory elements (the non-coding DNA that used to be considered “junk”, but which is now recognised as playing a vital role in regulating development) that genetic convergence was seen. It turns out that these elements were also driving convergence in brain development between Thylacines and canids.
After last week’s foray into insects, I have a nice chunky vertebrate skull to for you to have a go at identifying:
Any idea what this might be from? I have a feeling this may be way too easy for some of you, so let’s keep the answers cryptic or perhaps poetic, so everyone gets a chance to figure it out for themselves. Have fun!
Last week I gave you this rather fishy skull to have a go at identifying:
There was a lot of discussion about what it could be, which is unsurprising, since there are a LOT of fish species – with over 34,000 possibilities. This one proved additionally confusing, since it seems to have no teeth, as mentioned in the comments by Adam Yates. Fortunately, Wouter van Gestel flagged that some species with several rows of teeth tend to lose those teeth during preparation if it’s not done with sufficient care, which is useful to know.
I picked this object because I get a lot of requests for identifications of fish skull bones and this specimen is helpful, as it has the various bones of the skull labelled individually:
This specimen also happens to be a fish from a family that often comes up for identification. The neurocranium (or braincase) has a fairly characteristic shape in these fish, which is best seen from above on the skull (although unfortunately it’s not labelled in the image below):
The neurocranium tends to be a bone that gets found on beaches quite commonly. In fact, I have had a similar neurocranium as a mystery object in the past, so you may have seen one here before:
This shape is what I expect to see from members of the True Cod family, the Gadidae. Clearly a lot of other people recognised this as well, since Chris kicked off the comments with references to Gadus, Cod and Pollock and there were lots of suggestions of Cod and Pollock (AKA Saithe) on Twitter:
Is it a sáith?
— Catherine McCarney (@CathrinMcCarney) June 11, 2021
Unfortunatley, this is where it gets more complicated. Differentiating between different Gadids isn’t always easy. The size suggests it will be one of the larger members of the family – Cod, Haddock or Pollock being the main focus. Haddock is easy enough to dismiss, since they have small mouths, with lower jaws (composed mainly of the dentary and articular bones) that don’t project as far as we see in this specimen.
After that it gets really quite tricky – to the point where I am now doubting the original identification we have for the mystery object. This specimen was labelled as an Atlantic Cod Gadus morhua, although the original identification when acquired from Rowland Ward was Pacific Cod Gadus macrocephalus. But after a lot of searching of images from some pretty reliable online resources, I’m increasingly convinced that the specimen is a Pollack, Pollock or Saithe Pollachius pollachius (Linnaeus, 1758) – N.B. I’m ruling out P. virens since the lower jaw proportions are wrong.
The reason I’m thinking Pollack is based around a few small features of a couple of the bones of the skull. In particular, I’m interested in the shape of the hyomandibular and the opercular (Osteobase has these elements for Cod, but unfortunatley not Pollack). To give you an idea of the differences, here are the Cod elements (superimposed in blue) alongside the same bones of the mystery object (tinted red):
These differences are consistent across the skull specimens of Cod and Pollack that I’ve managed to find. The Cod has notch in the upper leading edge of the hyomandibular, unlike the Pollack, which has a more obtuse smooth line along the leading edge. The Cod also has a notch in the trailing lower edge of the opercular, that is just seen as a slight concavity in the Pollack.
I’d be interested to hear what you think about these suggested features!
This week I have a complex skull for you to have a go at identifying:
It may help that this has the various bones of the head identified and labelled, although maybe not. I hope you find it an interesting challenge either way!
Last week I gave you this toothy specimen from the Dead Zoo to have a go at identifying:
Everyone spotted that this is the skull of a toothed whale (or large dolphin), but after that, things got a little bit more confusing. In particular, the arrangement of the four pairs of teeth in only the front section of the lower jaw, seems to have thrown a lot people off.
There were several suggestions of Beluga whale, but they have around 40 teeth between the upper and lower jaws and clearly this doesn’t (and even if teeth had fallen out, you’d expect to see some empty sockets in the mandible). There were also suggestions of Narwhal, but they have a maximum of 4 teeth only in the upper jaw and one – or very occasionally two – form the Narwhal’s unmistakeable tusk(s). This is neither a Beluga whale nor a Narwhal.
However, the similarity of this skull to these two species did lead to speculation about whether this might be a hybrid between Beluga and Narwhal – one of the infamous Narlugas (or more accurately Belwhals). Ed Yong wrote about these real, but very rare, animals in the Atlantic a couple of years ago and I recommend having a read. If you do, you’ll discover that only one specimen is known and this is most definitely not it. As disappointing as this will no doubt be for some, we live in a world where hopes and dreams are routinely dashed against the rocks of reality, so let’s get ready to rock.
There are around 30 species of Oceanic dolphin, ranging in size from 50kg to 10,000kg. You can see that this one is a bit bigger than the specimen next to it and it has much broader and more chunky ‘cheeks’ (for want of a better term). This is something I normaly associate with the bigger dolphins that are usually referred to as whales – things like Pilot whales, Killer whales and the species in the Monodontidae that I mentioned earlier.
Most of the Delphinoidea have a lot of teeth to assist with prey capture, but this mystery object has got creative with just 4 pairs in the lower jaw (although obviously not as creative as the Narwhal). This limits the possibilities significantly, since it’s a fairly unusual condition. The other type of whales that only have a small number of teeth in just the lower jaw are the beaked whales, which primarily feed on soft-bodied cephalopods and have repurposed their teeth for competition. The mystery species has, perhaps unsurprisingly, done the very same. So, we’re left with the question of which of the bigger dolphins feeds on cephalopods and has an unusual arrangement of teeth?
The answer, as Adam Yates was the first to share, is the Grampus or Risso’s Dolphin Grampus griseus (G. Cuvier, 1812). They have between 7 and 2 pairs of teeth in their lower jaw and none in the upper. The live animals are quite heavily scarred from their interactions with those teeth.