Friday mystery object #410 answer

Last week I gave you this rather fishy skull to have a go at identifying:

There was a lot of discussion about what it could be, which is unsurprising, since there are a LOT of fish species – with over 34,000 possibilities. This one proved additionally confusing, since it seems to have no teeth, as mentioned in the comments by Adam Yates. Fortunately, Wouter van Gestel flagged that some species with several rows of teeth tend to lose those teeth during preparation if it’s not done with sufficient care, which is useful to know.

I picked this object because I get a lot of requests for identifications of fish skull bones and this specimen is helpful, as it has the various bones of the skull labelled individually:

This specimen also happens to be a fish from a family that often comes up for identification. The neurocranium (or braincase) has a fairly characteristic shape in these fish, which is best seen from above on the skull (although unfortunately it’s not labelled in the image below):

The neurocranium tends to be a bone that gets found on beaches quite commonly. In fact, I have had a similar neurocranium as a mystery object in the past, so you may have seen one here before:

This shape is what I expect to see from members of the True Cod family, the Gadidae. Clearly a lot of other people recognised this as well, since Chris kicked off the comments with references to Gadus, Cod and Pollock and there were lots of suggestions of Cod and Pollock (AKA Saithe) on Twitter:

Unfortunatley, this is where it gets more complicated. Differentiating between different Gadids isn’t always easy. The size suggests it will be one of the larger members of the family – Cod, Haddock or Pollock being the main focus. Haddock is easy enough to dismiss, since they have small mouths, with lower jaws (composed mainly of the dentary and articular bones) that don’t project as far as we see in this specimen.

After that it gets really quite tricky – to the point where I am now doubting the original identification we have for the mystery object. This specimen was labelled as an Atlantic Cod Gadus morhua, although the original identification when acquired from Rowland Ward was Pacific Cod Gadus macrocephalus. But after a lot of searching of images from some pretty reliable online resources, I’m increasingly convinced that the specimen is a Pollack, Pollock or Saithe Pollachius pollachius (Linnaeus, 1758) – N.B. I’m ruling out P. virens since the lower jaw proportions are wrong.

The reason I’m thinking Pollack is based around a few small features of a couple of the bones of the skull. In particular, I’m interested in the shape of the hyomandibular and the opercular (Osteobase has these elements for Cod, but unfortunatley not Pollack). To give you an idea of the differences, here are the Cod elements (superimposed in blue) alongside the same bones of the mystery object (tinted red):

These differences are consistent across the skull specimens of Cod and Pollack that I’ve managed to find. The Cod has notch in the upper leading edge of the hyomandibular, unlike the Pollack, which has a more obtuse smooth line along the leading edge. The Cod also has a notch in the trailing lower edge of the opercular, that is just seen as a slight concavity in the Pollack.

I’d be interested to hear what you think about these suggested features!

Friday mystery object #409 answer

Last week I gave you this toothy specimen from the Dead Zoo to have a go at identifying:

Everyone spotted that this is the skull of a toothed whale (or large dolphin), but after that, things got a little bit more confusing. In particular, the arrangement of the four pairs of teeth in only the front section of the lower jaw, seems to have thrown a lot people off.

There were several suggestions of Beluga whale, but they have around 40 teeth between the upper and lower jaws and clearly this doesn’t (and even if teeth had fallen out, you’d expect to see some empty sockets in the mandible). There were also suggestions of Narwhal, but they have a maximum of 4 teeth only in the upper jaw and one – or very occasionally two – form the Narwhal’s unmistakeable tusk(s). This is neither a Beluga whale nor a Narwhal.

However, the similarity of this skull to these two species did lead to speculation about whether this might be a hybrid between Beluga and Narwhal – one of the infamous Narlugas (or more accurately Belwhals). Ed Yong wrote about these real, but very rare, animals in the Atlantic a couple of years ago and I recommend having a read. If you do, you’ll discover that only one specimen is known and this is most definitely not it. As disappointing as this will no doubt be for some, we live in a world where hopes and dreams are routinely dashed against the rocks of reality, so let’s get ready to rock.

There are around 30 species of Oceanic dolphin, ranging in size from 50kg to 10,000kg. You can see that this one is a bit bigger than the specimen next to it and it has much broader and more chunky ‘cheeks’ (for want of a better term). This is something I normaly associate with the bigger dolphins that are usually referred to as whales – things like Pilot whales, Killer whales and the species in the Monodontidae that I mentioned earlier.

Most of the Delphinoidea have a lot of teeth to assist with prey capture, but this mystery object has got creative with just 4 pairs in the lower jaw (although obviously not as creative as the Narwhal). This limits the possibilities significantly, since it’s a fairly unusual condition. The other type of whales that only have a small number of teeth in just the lower jaw are the beaked whales, which primarily feed on soft-bodied cephalopods and have repurposed their teeth for competition. The mystery species has, perhaps unsurprisingly, done the very same. So, we’re left with the question of which of the bigger dolphins feeds on cephalopods and has an unusual arrangement of teeth?

The answer, as Adam Yates was the first to share, is the Grampus or Risso’s Dolphin Grampus griseus (G. Cuvier, 1812). They have between 7 and 2 pairs of teeth in their lower jaw and none in the upper. The live animals are quite heavily scarred from their interactions with those teeth.

Grampus illustration by Citron / CC-BY-SA-3.0

Stay tuned for another mystery object next week!

Friday mystery object #408 answer

Last week I gave you this skull from the Dead Zoo to have a go at identifying:

Obviously the horns let us know that it’s some kind of bovid, but as has been noted before, there are a LOT of bovids. Overall horn configuration is a useful indicator of which general part of the bovid family tree to consider and I always find myself needing to check references to make sure I remember the general configurations.

A very helpful overview of horn morphology for the main subfamilies within the Bovide is illustrated by M. Van Bolt in a paper by Barbara Lundrigan from 1996*

Horn morphology in the main subfamilies within the Bovide. Illustrated by M. Van Bolt in Lundrigan, 1996*

Capturing the horn angle accurately in a photograph can be quite tricky, which is why I provided more than one angle:

A quick check shows that the horn shape of this specimen is distinctively Reedbuck. There are three species in the Genus Redunca, with fairly clear differences in things like the proportions of the maxilla and the shape of the orbit, but again the horns offer a clue.

Mountain Reedbucks have short horns, only in the region of about 15cm, a bit on the short side for this specimen, where they look to be around 25cm or so. The Southern Reedbuck has much longer horns in the range of 35-45cm, a bit bigger than this specimen. That leaves one Goldilocks species with horns 25-35cm long – the Bohor Reedbuck Redunca redunca (Pallas, 1767).

So well done to everyone who recognised this as a Reedbuck and special props to Goatlips who suggested Bohor Reedbuck. Hopefully the illustrated phylogeny I shared will help with future identifications.

*Journal of Mammalogy, 77(2):462-475, 1996

Friday mystery object #407 answer

Last week I finally got a chance to share a nice skull from the Dead Zoo for you to identify:

Bird skulls are always an interesting challenge, because the bill can give away some useful clues and there is a fantastic online resource available to help with their identification, in the form of SkullSite, run by Zygoma regular Wouter van Gestel. Perhaps unsurprisingly Wouter tends to be one of the first to get a correct answer when the mystery object is avian – and this one was no exception.

One of the useful features on SkullSite is the ability to do a custom search, which allows you to restrict the size range of skulls and the bill shapes to search through. This allows easy comparison between the skulls of possible taxa, making identification more straightforward, once you get your eye trained to recognise useful features.

In this case there are a few species in the same size range with similar shaped bills. The closest species in size and shape (that’s not a close relative) is the Great Bustard. However, the Great Bustard has much longer nares (the fancy name for nose-holes) than the mystery object and the bustard’s lacrimal bones (the small bones that flare out just to the front of, and above, the eye sockets) are much smaller and less pronounced than what we see in the mystery specimen.

That leaves the two species in the Family Cariamidae (or Seriemas) to pick from. The size of the specimen alone makes that fairly straightforward, as there’s around 15mm difference in the skull length between the two. However, if you want a morphological feature, the mandibular fenestra (the ‘window’ visible in the side of the lower jaw slightly back from the midway point) is proprtionally a lot larger in the Black-legged Seriema compared to that of the Red-legged Seriema.

The fenestra is small in the mystery object, while the skull is large, making this a specimen of the Red-legged Seriema Cariama cristata (Linnaeus, 1766).

A Red-legged Seriema in Reserva Ambiental, Piraju, São Paulo, Brazil. Image by Dario Sanches, 2010

I tend to think of Seriemas as the South American equivalent of the Secretarybird, since they are ground-hunting predators in scrubby environments that have a fondness for venomous snake snacks.

Both have long legs and small feet, neither fly much and both have eyelashes, as pointed out by Goatlips on Twitter:

I’d never really consider the bird eyelashes thing and it makes perfect sense for terrestrial birds foraging on the ground in arid environments to have some extra eye protection from sun and dust afforded by filamentous feathers around the eyes. It turns out this holds true for birds like Ostriches, Emus, Cassowarys, Rheas, Road-runners and the Ground Hornbills.

However, some other Hornbills that live in very different environments also have eyelashes as do those odd arboreal Hoatzins, so there must be something else going on with those lovely lashes that I’m missing.

I hope you enjoyed this bony challenge – please feel free to add your thoughts on the eyelash situation and perhaps mention any species you’ve noticed this feature in before. You never know, together we might figure out what those lashes are all about.

Friday mystery object #402

This week I have another specimen from the Dead Zoo for you to have a go at identifying:

Skull length approx. 170mm

It’s one of almost two thousand birds that will be put into storage as part of the big decant we’ve been working on.

If you’re interested in finding out more about the project and some of the complexities involved, I’ll be doing a virtual talk about it next Friday evening (GMT) for PubSci – it’s free and the details are here if you’d like to join in.

Have fun!

Friday mystery object #401 answer

Last week I gave you this gnarly looking skull from the Dead Zoo to identify:

I didn’t think it would be a difficult one, especially since it is a critter I’ve used as a mystery object before (although that was over 10 years ago!)

As I suspected, everyone figured out that this is the skull of an Alligator Snapping Turtle, but things have become a bit more complicated than they used to be over the last decade, since the single species that used to be in the genus Macrochelys has since been split.

The amount of splitting has varied, but at the moment it seems to have settled on two species being recognised; Macrochelys temminckii (Troost, 1835) and Macrochelys suwanniensis Thomas et al., 2014.

Variation of the squamosal in A. Macrochelys temminckii and C. Macrochelys suwanniensis. Adapted from Thomas et al. 2014. Zootaxa 3786(2):141–165

One of the key diagnostic features identified to differentiate between them is the angle of the squamosal (the bit of bone with the arrow pointing it above). In M. temminckii the angle is greater than 90° whereas in M. suwanniensis it’s less than 90°.

That suggests to me that the Dead Zoo specimen is probably the Suwannee Snapping Turtle Macrochelys suwanniensis Thomas et al., 2014. The only problem with this identification is that the collection locality is simply “Mississippi”, which doesn’t fit with the Suwannee river distribution of the species.

I’ll need to go back and look at a few other skeletal characters to confirm the identification once I’m back in the Dead Zoo, but my guess is simply that the collection locality wasn’t accurately recorded, since the specimen came from the natural history supplier Edward Gerrard rather being collected and properly documented by a researcher.

It certainly wouldn’t be the first time a representative locality has been given for a specimen meant for display or teaching rather than research!

Friday mystery object #391 answer

Last week I gave you this skull from the Dead Zoo to have a go at identifying:

I think it’s quite a distinctive skull, so I didn’t provide a scale and I asked for cryptic clues to avoid spoiling the challenge.

The overall skull shape is fairly standard for an Artiodactyl, but while this specimen has no incisors in the upper jaw, there are fairly obviously empty alveoli that show where the teeth used to be. That means it’s not a member of the Ruminantia (the deer, antelope, cattle, giraffes and weird deery-antelopey type critters like chevrotains) since they all lack upper incisors.

That leaves the pigs, hippos and camels – and it’s clearly not one of the pigs or hippos.

The camel family is a bit odd. There are three wild species, but then an additional four entirely domesticated species. The proportions of this skull are a bit long for a Llama, Guanaco, Alpaca or Vicuña. That leaves the Dromedary, Wild Bactrian or Domesticated Bactrian camel as possibilities.

Dromedary skulls tend to have a horizontal nasal region then a steep rise to the braincase immediately behind the orbits, but this specimen has a more gentle slope running from the nose to the top of the braincase, so it’s Bactrian.

Unfortunately the Wild Bactrian camel is critically endangered and poorly represented in collections, so it’s hard to find enough comparative material to differentiate the wild and domestic Bactrians.

Well done to everyone who figured out that this is one of the double-humped ships of the desert. There were some great clues in the answers!

Friday mystery object #390 answer

Last week I gave you this specimen from the Dead Zoo to have a go at identifying:

It came from a cabinet of cave bones, but Nigel Monaghan (Keeper of the Dead Zoo) wasn’t convinced that this specimen was actually found in a cave.

Partly that’s because it’s a fairly fragile specimen with poorly fused sutures – these don’t usually stay connected in cave deposits, but also because it’s from a species that you wouldn’t expect to find in the kind of caves that the rest of these collections came from. So what is the species?

I don’t think this is a very difficult one since I’ve done very similar specimens before (regular visitors should have had an advantage), so I was looking for cryptic or entertaining answers – and I was not disappointed. Tony Irwin got a great clue in, with a pun that reflected the genus:

I think we need to focus (did I spell that right?) on the shape.

It is of course the skull of a seal in the genus Phoca – and the blunt shape of the anterior portion of the auditory bulla suggests to me that it’s a Harbour Seal Phoca vitulina Linnaeus, 1758 rather than the very similar Spotted Seal, which has a slightly more accute angle on the anterior auditory bulla.

So well done to everyone who figured it out! Now we just need to figure out how it either got into a cave or (possibly more likely) got put into the wrong cabinet.

Friday mystery object #390

This week I have a mystery object that my boss, mentor and the Keeper of the Dead Zoo, Nigel Monaghan, found while working on a collection of cave bones:

Now Nigel has already worked out what it is thanks to a website that has images of skulls with id tips that you may have seen before (yep, this one), but do you recognise what this is?

I think this is a nice straightforward object, so maybe a good one for some fun cryptic or otherwise entertaining answers? Have fun!

Friday mystery object #385

This week I have a mystery object from the Dead Zoo that I think you’ll probably find easy to get to genus, but then I think it’ll get much more difficult:

mystery385dorsal

mystery385lateralmystery385anterior

If it proves too hard to work out the species I have a clue that might help and I’ll add it to the post next week. Have fun!

Aaand, here’s your clue! This is where the label says it’s from. I hope that helps!

wp-1593445090171..jpg

Friday mystery object #380 answer

Last week I gave you this specimen from the “Unidentified” drawer in the collections of the Dead Zoo to try identifying:

mystery380

I don’t think anyone had much difficulty in identifying it, since it is quite a familiar and characteristic skull, but well done to everyone who worked out that this is a European Badger Meles meles (Linnaeus, 1758).

There are two other species in the same genus – the Asian Badger M. leucurus and Japanese Badger M. anakuma, so they also need consideration (skulls of all three species can be seen in this paper by Andrey Puzachenko). However, the Japanese Badger is a smaller and more delicately skulled animal and the Asian Badger can be distinguised by differences in the shape of the region around the bony bulbs that hold the ear bones (called the auditory bullae – in Asian Badgers they’re more obtuse and have a straighter lateral margin).

So apart from the distinction between two members of the same genus, this is a fairly straighforward specimen to identify, it makes me wonder why it wasn’t recognised in the collection? I think there are a couple of factors, which I’ll outline here.

The first is that the lower jaw (mandible) is missing. This is totally normal for almost any kind of animal skull you find, except these badgers, which have a well-developed bony process that locks the mandible into the long jaw articulation (known as the glenoid fossa).

Badger

Badger skull with mandible locked in place.

Glenoid

Detail of jaw articulation showing the main features. Red = mandibular articulation, Blue = inside of glenoid fossa, Green = glenoid process that helps lock the lower jaw in place.

This captive mandible is a dead give-away when you see it, but it does mean that when it’s missing it can be confusing.

A mature adult European Badger like this (as indicated by the well-developed sagittal crest) would also normally have extremely extensive wear on their molar teeth, due to the abrasive grit in the gut of their main diet of Earthworms.

Molars

Extensively worn upper molars of an adult European Badger

But the mystery specimen has remarkably little wear on those massive molars. This suggests that it probably had a different diet than is usual for a Badger from northern Europe – and no, not mashed potatoes. The same species in southern Europe has a different diet to their northern counterparts, dominated by insects and fruit, so I wonder if the specimen was collected during someone’s holiday to somewhere in the Mediterranean?

[UPDATE 28th April 2020. Several people have kindly shared images of their badger specimens and it seems that the level of wear in my specimen is not as common as I thought. In one discussion the issue of soil type was raised and I think that may play a big factor. This specimen came from Devon, in an area with sandy soil. Other specimens from areas with muddy or silty soils showed much less wear. This may be coincidence, but it would make sense that Earthworms with coarser soil in their gut would be more abrasive to eat and therefore cause more dental wear. That would be fairly straightforward to test using museum collections. If this hypothesis about wear is correct, then the mystery specimen could be from anywhere with soils that aren’t too sandy.]

I hope you found that useful, or at least a bit of a distraction from lockdown. Stay safe!

Friday mystery object #379 answer

Last week I gave you this rather nice, but somewhat tricky mystery object to have a go at identifying:

mystery379

As well as here on Zygoma, people were checking this out on Twitter, where it was shared under the #GuessTheSkull hashtag started by @Yara_Haridy. I strongly recommend checking it out if you’re on Twitter and also giving Yara a follow as she does some great stuff.

As to this specimen, despite the difficulty, several of you managed to work it out down to species level – which I think deserves a round of applause, because this critter is not very well-known and there are few resources out there with examples of their skulls.

So, working through the options, despite having a whiff of possum about it, it can’t be a marsupial because it doesn’t have holes in the roof of the mouth (aka palatal vacuities), a shelf on the inside of the mandible or a tearduct on the outside of the orbit (aka external lacrimal duct) – all of which are marsupial traits as illustrated on this Tasmanian Devil skull below.

MarsupialFeatures

The teeth are those of a carnivore (or perhaps I should say Carnivore) and the auditory bulla is single chambered, so it’s one of the caniform carnivores, rather than one of the feliforms (that long snout suggests the same). This rules out the cats, hyaenas, mongooses and the weird Malagasy carnivores like the Fossa.

From that point on it gets more difficult. Some people thought it was a bit foxy, but the lack of a well-defined post orbital process rules out any of the dogs and it’s clearly not a bear, seal or sealion. That leaves the members of the Superfamily Musteloidea, which includes mustelids, racoons, the Red Panda, and the skunks.

Quite a lot of people got busy searching through possibilities in the largest of those groups – the mustelids. However, most of this family have fairly short, broad skulls. Only the ferret badger skulls come close to this specimen and even they aren’t as narrow. Similarly, the raccoons and Red Panda’s have fairly broad and short skulls.

So that leaves the skunks and relatives in the family Mephitidae. That makes life much easier, since there are only four genera in the family and three of those have wider skulls than this. So that leaves one genus that only contains two species – Mydaus or the Stink Badgers.

That’s where it gets really hard. A few folks on Twitter and Allen Hazen on the blog comments managed to get it to genus (Allen also worked out that it’s female), but I was especially impressed by the efforts of Rémi and katedmonson who went that step further and managed to get the identification to species. Here are the features:

katedmonson said:

…Comparing the two, M.j. has the slender snout, and a larger infraorbital foramen than the M.m. The big decider for me was the tympanic bulla. They seem to match the M.j. but not the smoother M.m. Also, females in the M.j. are known to lack a sagittal crest, so my best guess is female M. javanensis. About 4 years old. That had just eaten 6 earthworms and two beetles. And she had a limp on her left hind limb. (just kidding about the 6 earthworms, it was only 3)

I’m not sure about the earthworms, beetles or limp and I personally think the age would be a little younger – maybe 2.5 to 3 years since the earthworms have a large amount of grit in their gut and that significantly increases dental wear in animals that eat them. However, I think the rest is spot on – this is indeed the skull of a female Sunda Stink Badger Mydaus javanensis (Desmarest, 1820).

Mydaus javanensis

Mydaus javanensis specimen at Museum of Natural History in Vienna. By U.Name.Me, 2018

These odd looking animals have habits similar to the European Badger, foraging on the ground and in the surface of the soil for invertebrates and small prey, and sleeping in burrows during the day. However, while Badgers can be a bit whiffy, these guys have a full-on skunk-like noxious spray from their anal glands.

I hope you enjoyed that challenge, there will be another next Friday and if you want some extra mystery skulls, don’t forget to check out #GuessTheSkull onTwitter.

Have a great Easter!